phil wade dot org
I'm Phil Wade, I write code, homebrew beer and live with two cats, a dog, a wife and a daughter in Buffalo, NY.

Email phil (at) philwade (dot) org

My wife and I write about dinner: Us Versus Dinner

Twitter Github

Subscribe to RSS

Tweets by @phil_wade
A little more Quicksorting
by phil | Mar 15, 2012 - 04 p.m.

This has been quite a week. I've made the decision to take a new job and move my fiancee and myself to Buffalo from Brooklyn. We think that moving there will give us a better opportunity to live the lifestyle we want. A shorter commute, more space and proximity to family are among a whole host of reasons we've decided to do it. It was a difficult decision, and we'll both miss a lot of things about Brooklyn, but I think its for the best, even though I feel a little overwhelmed right now.

Anyway, I was poking through my work computer to see if there was any code that I didn't want to leave behind, and I found something that played off last week's interest in Quicksort. It was a piece of code that I had written when I first taught myself the algorithm. And, unlike most of your old code you run into, this was more nicely written than what I wrote just recently.
#what I wrote last week
def quicksortLoop(set):
    if len(set) <= 1:
        return set

    high = []
    low = []
    pivot = set.pop(len(set) / 2)

    for i in set:
        if i >= pivot:
    return quicksortLoop(low) + [pivot] + quicksortLoop(high)

#what I wrote a long time ago
def quicksort(list):
    if len(list) <= 1:
        return list;

    pivot = list.pop(len(list) / 2)
    less = [i for i in list if i < pivot]
    more = [i for i in list if i >= pivot]
    return quicksort(less) + [pivot] + quicksort(more)

Instead of looping through the set and putting values into two arrays, this implementation uses python's list comprehensions to build the more and less lists. I think this approach is much more elegant, yielding easier to read code.

This lead me to the question of whether or not the list comprehensions incurred a signifigant amount of overhead. To find out, I stripped away all the parts that distiguished the two different implementations from one another with the exception of the loop vs list comprehension pieces. Then I wrote some code to the run the two different function through the same paces.

from time import time
from random import randint

#function definitions here

if __name__ == "__main__":

    loopTimes = []
    compTimes = []

    for i in range(1, 1000):
        testSet = [randint(0, 100) for x in range(1000)]

        cSet = list(testSet)
        loopSet = list(testSet)

        compTime = time()
        compTime = time() - compTime

        loopTime = time()
        loopTime = time() - loopTime

    print "Avg with loop: ", sum(loopTimes)/1000
    print "Avg with list comprehension: ", sum(compTimes)/1000
What this is does is sort a thousand lists, each containing a thousand numbers between one and one hundred, using both sorting functions. It counts the time each function takes on each list, and then calculates an average.

The results are sort of interesting.
[snpxw@PWadeiMAC:random-bits ]$ python 
Avg with loop:  0.00623641085625
Avg with list comprehension:  0.0061008477211
List comprehensions beat the loop every time, which is the opposite of what I expected. I'll speculate that the difference is either some internal optimization python makes for list comprehensions, or the pre-allocation of the low and high arrays in the loop version. I'm going to have to do a bit more research about what happens inside python to figure it out.

Regardless, the difference is negligible. Even if the list being sorted was five thousand times larger (that is, five million elements), the difference in the two implementations would be about 0.5 seconds. Not really enough to bother most people.

(The full code from this post is here.)
by phil | Mar 9, 2012 - 12 p.m.

I've spent a bit of time this week thinking about QuickSort. More specifically, I've been thinking about the complexity of the Quicksort worst case. On an already sorted set, Quicksort has a complexity of O(n^2), which I guess I understand on a basic level. Generally speaking, when the set is already sorted, Quicksort needs to compare every element to every other element each time it partitions the set. Partition n times, doing n comparisons, then you have n^2 comparisons. Makes sense, but instead of just leaving it, I've been trying to grasp it more definetly. In my mind, the comparisons on subsequent sets should be getting smaller. ie n-1, n-2, n-3 comparisons and so on.

I thought perhaps coding up a measurement of the complexity would help me wrap my head around it.

class QuickSorter:

    def __init__(self):
        self.depth = 0
        self.complexity = 0

    def quickSort(self, set):
        self.depth += 1
        self.complexity += 1;
        if(len(set) == 1 or len(set) == 0):
            return set

        high = []
        low = []
        pivot = set[0]

        for i in set:
            self.complexity += 2
            if i > pivot:
        return self.quickSort(low) + [pivot] + self.quickSort(high)

if __name__ == "__main__":
    q = QuickSorter()
    runset = [1, 2, 3, 4, 5, 6, 7]
    print q.quickSort(runset)
    print q.complexity

After a bit of messing around trying to decide what should be part of the complexity measurement, you'll see I decided on counting the check on the length of the array, and the greater than and less than checks on values. It all seemed to make perfect sense, but my numbers kept coming out wrong.

On an already sorted array of length 3, instead of getting back 9 operations, I got 11. A set of 6? 41 operations. It was making me insane, but then I realized that the actual complexity of the worst case ended up being O(n^2 + (n - 1)). The n-1 comes from the length checks on all of the empty sets. This promptly made me remember the way big O notation is handled, where the slowest growing elements of the complexity are discarded. What is the growth of n-1 in comparison to the speed of n^2? Insignificant.

It was a nice bonus to figure that all out, but I still don't think I'm satisifed. The issue with n-1 should be a lesson that understanding the complexity of these algorithms is less about actual exact measurement, and more about mathematical understanding of the situation. So, while I think I "get" it enough to get by, I'm going to spend a bit of time re-familiarizing myself with the math.

Anyway, I put the code up here. There is also an implementation of the in-place version of Quicksort there as a bonus.

As a quick aside, I realize that picking the first element in the array as a pivot is bad practice, as it often triggers worst case behavior. That was my intention here.

Update: I've spent a bit more time reading after writing this post, and I've come to the following understanding of Quicksort: in the best case, we evenly divide the array into roughly half the size, so we recursively build log n levels before we reach our base case, a list of size one. On each level, there is O(n) amount of work done, which gives us the case, O(n log n). By the same token, when we encounter the worst case, we must recursively divide the set n times before we get to the base case, giving us n levels with O(n) complexity, coming out to the worst case O(n^2).

Whew. That feels much better.
by phil | Mar 3, 2012 - 01 p.m.

Instead of a blog post here, this week I opted to write about bread over at my (and Hillary's) cooking blog: Us Versus Dinner. If you're into that sort of thing, or just like looking at pictures of tasty bread, give it a look. I'll be back here next week with something more appropriately nerdy.
Why bitbucket is great
by phil | Feb 24, 2012 - 12 p.m.

Version control is the software miracle that nobody seems to know about until they get their first job. I've read plenty of forum posts from computer science students asking "What don't they teach you in school?", and inevitably the first response is about version control. It was true for me.

Even for solo development VC is great, and since I've known about it, I've hosted all of my code in a private Subversion repository. This makes working on my code from anywhere easy, and has the added benefit of keeping a backup of my work.

Just as I was becoming comfortable with Subversion, newer distributed version control systems popped up. As the hype around both Git and Mercurial grew, I decided it would be in my best interest to bring myself up to speed. At work we considered switching to Mercurial, mainly on the grounds that it had wider operating system compatibility, so I created myself a Bitbucket account to aid in learning. At the time, Github was exclusively git, and Bitbucket exclusively mercurial.

Both Bitbucket and Github brand themselves as "social coding" websites, but even as I began to use my Bitbucket for all my non-private projects, I never really thought about it. My main reasoning for using it was as an added facet to my resume. Because of the nature of programming, it is sometimes difficult to express your ability level, especially in an interview. Being able to point someone at a big pile of code you've written is helpful.

I really discovered why the "social" aspect of these sites is a big selling point a couple of weeks ago. I posted about GreyHolder, a little jQuery plugin that I wrote and released on my Bitbucket. What I didn't realize was that is contained a bug that could potentially throw away user input. Not very cute behavior for something that is supposed to make life easier on the user. I didn't notice the bug, but my friend Dan did. Because the code was on Bitbucket, he was able to grab it, fix the bug and then send me a pull request to grab the fix. That meant that all I had to do to fix the problem was click a button accepting his new code.

I don't know if you've ever fixed a bug with the press of a button, but it's great, and it should be (and is) the main selling point for code hosting sites. That capability is the reason I'm going to be using code hosting for all my future projects, even the private ones.
Some thoughts on Facebook
by phil | Feb 17, 2012 - 12 p.m.

I've never been the biggest fan of Facebook. I have an account, and I check in on it occasionally, but it has never really rubbed me the right way. Why that was the case wasn't clear to me until recently.

Facebook reminds me of AOL. When internet penetration was really ramping up, but before broadband was widely available, AOL was the way that almost everyone got online. AOL wasn't (isn't?) just internet access, it was an entire monolithic internet user experience. For most people, AOL email, AOL chatrooms, AOL instant messaging and AOL content was the internet, and the AOL internet was not very compatible with the rest of the internet. This is what Facebook reminds me of.

Facebook seems to be aiming for the same all encompassing online experience. Facebook can feasibly replace your email, twitter, instant messager, blog, photo sharing service and any online games you might play. There have also been changes recently to try and make facebook your source for news. I suppose all of this is convenient for the user, but I don't like having my entire online presence tied up with one company. Not only does it give them a lot of power, but it nudges you into using whatever implementation of a given technology they are pushing, with no mind to quality. I don't mind facebook keeping track of my friends comings and goings, but when it comes to disseminating information, I prefer twitter. I'd rather maintain my own blog and use a third party instant messaging client because while those service are on facebook, other services do them better.

When I look at the online presences of prominent technology people, they also seem to be spread across different services, picking and choosing the ones that they like, and unlike facebook, I can still check them out without strapping into the service they use. While part of the reason people are so locked into facebook is the lower technological bar for entry, I think as people become more savvy and other services become easier, facebook will start to lose some traction.

Now, AOL is still around, but in an extremely hobbled form. Will the same thing happen to facebook? It doesn't seem super likely, but at the peak of AOL, it didn't seem very likely they were going very far either. AOL had the misfortune of being struck down by broadband, and maybe facebook will have it's own broadband come and strike it down. Perhaps everyone will just leave. Tough to say.